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The polarographic oxidation of a series of 5-azaindoline, 7-azaindoline, and 5,7~diazaindoline
derivatives (22 compounds) was studied, and the results are compared with the ease of dehy-
drogenation of these substances under the influence of quinones. It is shown that E,/, in-
creases on passing from 7-azaindolines to 5-azaindolines and then to 5,7-diazaindolines.

The effect of substituents is satisfactorily described by cross-correlation equations, while
the deviations from the correlation are associated with the peculiarities of the lactam—1lac-
tim tautomeric equilibrium in a mumber of 6-hydroxy-5- and 7-azaindolines.

In connection with the increase in the resistance to oxidation on passing from 7-azaindolines to the
corresponding 5-azaindolines and 5,7-diazaindolines, which is also well known from chemical experiments,
for their polarographic study we used a 0.5 M solution of silver perchlorate in anhydrous acetonitrile (which
has a decomposition potential of 2.2 V) as the inert electrolyte; this made it possible to study the electro-
chemical processes over a wider range.

Most of the investigated compounds have rather high E; s, values. On passing from 7-azaindolines to
the analogous 5-azaindolines and then to 5,7~diazaindolines, the oxidation potential increases (compare, for
example, XII, II, and XXI), but E; /2 increases (up to 1.49 V) particularly sharply in the case of a strongelec-
tron-acceptor acyl substituent in the 1 position. (XVIII), The introduction of chlorine atoms into the 4 and
6 positions of various azaindoline molecules leads to an increase in E; /2 (for example, I, IIT, and VI or II
and IV). A phenyl ring attached to the pyrroline nitrogen has a similar but weaker effect. The effect is in-
tensified (I and I, I and IV, XII, XVI, and XVII) when electron-acceptor substituents (nitro or cyano groups)
are introduced into the para position of the phenyl ring. The increase in the oxidation potentials of com-
pounds that contain an aza function in the 5 position is apparently associated with the large contribution and
the high stability of the mesomeric p-quinoid structure as compared with the mesomeric o-quinoid struc-
ture for the 7-aza-substituted compounds. The greater contribution of the p-quinoid structure in the case
of 5- and 6-azaindoles as compared with the o-quinoid mesomeric form in 4~ and 7-azaindoles was pre-
viously also used by Adler and Albert in explaining the differences in the peculiarities of 5~ and 6-azaindoles
as compared with 4- and 7-azaindoles [2]. Distinct 8-shaped volt-ampere curves are characteristic for all
of the 7-azaindole derivatives, while the polarograms of the 5-azaindoles are misrepresented by the maxima.
This phenomenon is apparently due to retardation of the electrode process by the electrooxidation products
on the electrode surface. The products of electrooxidation of 7-azaindolines adsorbed on the anode do not
have this sort of effect.

The Ey /2 values determined from the method set forth above in the present paper (in acetonitrile) and
from the method presented in a previous paper [3] with the Britton—Robinsonbuffer are in good agreement,
Thus, for example, for 1-phenyl-4-methyl-7-azaindoline (XT) these values are 0.87 and 0.88 V, respectively,
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TABLE 1. Results of the Polarographic Oxidation of Aza- and

Diazaindolines
R3 R?
Xz rjl . WK‘ ]
—2H -2 ——
R’J\\Y N ) RZJ%‘{ N
| |
R R
Com~| Name and reference to the X v - \ -y
pound | synthetic method used R R "
1| 5-Azaindoline [6] N CH! H H H (095
I1 | 1-Phenyl-5-azaindoline [6] N CH | CgHs H H 097
11T | 6-Chloro-5~-azaindoline [7] N CH| H Cl H 1,07
v 1-Phen§1-6-chloro-5- N CH| CgHs Cl H |12
azaindoline [6]
V | 1-Benzyl-6-chloro-5- N CH| CH.CeHs Cl H |1,09
azaindoline [6] CH
VI 4,6-Dichloro-5-azaindoline [8] N H Cl Cl 1,21
VIl 1-Phen()jr116-h céh]‘oxy-5~ N CH | CeHs HO H |145
azaindoline
VIII | 1-Benzyl-6-hydroxy-5- N CH | CH,CeHs HO H |L21
azaindoline [6]
IX | 5-Meth 1-6-ox§]-5- N—CHs | CH| H 0 H 1,24
azaindoline
X 6-Isopropxy§5]Eaza_ N CH| H OCH(CHs)2| H 098
indoline [
XI 1-Benzy1-6-1sopr05)oxy- N CH| CH,Cells; | OCH(CH3)sl H |096
5-azaindoline [9
XII | 1-Phenyl-4~-methyl-7- CH N | CsHs H CH; {087
azaindoline [10] cH N T |
XIIT | 4-Methyl-6-chloro-1- ¢ CH, |095
azaindoline [11]
X1V | 4-Methyl~7-azaindoline [11] CH N | H F CH; 10,82
zaindoline
XVI| 1-(p-Cyanophenyl)-4- . CH N | p-CHCN | H CH; | 1,07
methyl-7-azaindoline [12] C C.H,NO
XVII | 1=(p-Nitrophenyl)-4-methyl - H | N pCHNO: | H CHjy [1,12
T-azaindoline[12]
XVIII l_Acgt(}i,li4_mﬁt{1 1-7. CH N | COCH,3 H CHs | 1,49
azaindoline
XIX 1BP%en 1-‘}7-1’1’18121,1 d1'16‘ - CH N | Cetls HO CH; 0,90
ydroky-7-azaiddoline
XX | 1-Butyl-4-methyl-6-hydroxy~ | CHL | N | CaHlo HO CH, 1079
T-azaindoline 18] N . H '
XX1 1-:?36{1,%1-5[11-]-&&2&- ! N ! Cs 5 H H (1,12
indoline . !
XXII | 1-Benzyl-5,7-diaza- N N | CHGHs H Ho1.28
indoline [15] !

while the values obtained for 4-methyl-7-azaindoline (XIV) and 4-methyl-6-methoxy-7-azaindoline XV) are,
respectively, 0.82 and 0.84 V and 0.61 and 0.58 V. The E;/, values determined in acetonitrile for XVI and
XVII, which have electron-acceptor substituents in the para position of the pheny! ring, are in good agreement
with the theoretical values calculated for these substances from the cross-correlation equation [3] derived
on the basis of a polarographic analysis of substituted 7-azaindolines in Britton—Robinson buffer solutions -
(for XVI, calculated 0.98, found 1.07; for XVII, calculated 1.00, found 1.12). For 4-methyl-6-chloro-7-aza-
indoline (XIII), the E; /2 value found in acetonitrile (0.95) is in much better agreement with the value calcu—
lated from the correlation equation (0.91) than that determined previously in [3], in which the measured po-
tential values are close to the decomposition potential of the electrolyte used. For 6-hydroxy-7-azaindoline
derivatives (XIX and XX), which are characterized by lactam—lactim tautomerism [13], the equilibrium
state of which is determined by the polarity of the solvent, extremely different E; /, values are observed,
depending on the medium in which they are determined. Thus, for example, XIX in acetonitrile has E; /4
0.90 V as compared with 0.36 V in dimethylformamide—aqueous Britton —Robinson buffer, and the corre-
sponding values for XX are 0,79 V and 0.32 V. Such a sharp decrease in the oxidation potential is appar-
ently associated with the state of the tautomeric equilibrium in the indicated media. For 6-hydroxy-5-aza-
indolines (VII and VIII), in which, as is well known, the tautomeric equilibrium is practically completely
shifted to the oxo form, regardless of the polarity of the solvent [4], E;/, is found to be quite high (1.21-
1.45 V), and no sharp decrease in it is observed on passing tothe Britton—Robinsonbuffer (The E;/, values
of the substance lie beyond the limits of the oxidation potential of the electrolyte).

It is interesting to note that the E,/, values for "fixed" tautometric forms of 6-hydroxy- and 6-oxo~5-
azaindolines differ sharply. The E; /2 value for the "fixed" oxo form (IX) is 1.24 V and is close in magni-
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tude to unfixed 6-oxo-5-azaindolines (VI and VIII). The "fixed" hydroxy form (X and XI) is characterized
by another order of magnitude of E; /2 values, equal to 0.96-0.98 V.

The results of the dehydrogenation of aza- and diazaindoline derivatives to the corresponding aza-
and diazaindoles under the influence of quinones and other oxidizing agents are also in good agreement with
the data from polarographic analysis. Thus, all of the substances with E;/, values lower than 1.1 V are oxi-
dized to azaindoles by chloroanil, while a stronger oxidizing agent — dichlorodicyanoquinone — is required
for the dehydrogenation of compounds with E, s, values from 1.1t0 1.2 V. Substances with E; s, values above
1.4 V cannot be converted to the corresponding azaindoles even on heating with sulfur to 240° or with sele-
nium to 300° or by dehydrogenation with palladium.

EXPERIMENTAL

The polarographic oxidation of the compounds was carried out on a platinum rotating disk anode (with
a diameter of 2 mm and an angular rate of rotation of 1480 rpm). The methods used in the research and
purification of the electrode were previously described in [2]. The comparison electrode was a saturated
calomel electrode connected to the test solution by an electrolytic switch filled with an inert electrolyte.
The acetonitrile was purified by the method in [5]. The depolarizer concentration was 5-107¢ M. The volt-
ampere curves were recorded with a PA-101 electronic polarograph (Yanagimoto, Japan). The results are
presented in Table 1.
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